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Abstract
We propose a new global optimization method for solving mixed-integer nonlinear noncon-

vex optimization problems. The new method relaxes the nonconvex problem with a piecewise
linear envelope by using the concept of special ordered sets. The relaxed problem is then succes-
sively improved by branch-and-refine, a variant of the branch-and-bound strategy that refines
the discretization after branching. We establish convergence to a global optimum under mild
assumptions and show that it generates tighter relaxations than other commonly used underesti-
mators. The method is motivated by an application arising from power system analysis and has
been developed in a general framework that can be extended to solve a large class of problems.

Keywords: Mixed-integer nonlinear and nonconvex programming, global optimization, piece-
wise envelopes, branch-and-bound, branch-and-refine.
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1 Introduction

We consider the solution of nonconvex mixed-integer nonlinear programs (MINLPs). The interest
in solving nonconvex MINLPs is motivated by the large number of real-world applications that can
be modeled as MINLPs, including gas network problems (Martin et al., 2006), nuclear core reload
problems (Quist et al., 1998), trim loss minimization problems in the paper industry (Harjunkoski
et al., 1998), and power system management. We are particularly interested in an optimal power
flow (OPF) problem; see (Wanufelle, 2007, Chapter 2). Such a problem contains discrete variables
modeling the ratio of voltage and the activity of the capacitor banks, and nonlinear equations. The
equations involve trigonometric functions that arise in the definition of real and reactive power,
making the OPF problems highly nonconvex. Problems of this form can be expressed as

minimize
x,y

g0(x, y)

subject to gi(x, y) = 0, i = 1, . . . ,m
x ∈ X, y ∈ Y ∩ ZZ t, (x, y) ∈ P,

(P)
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where gi : IRs+t → IR, i = 0, . . . ,m are twice continuously differentiable and may be nonconvex
and the polyhedral set P contains all the general linear constraints on the problem. The variables x
and y denote the continuous and discrete variables, respectively, and the sets X and Y are defined
by

X = {x ∈ IRs : lx ≤ x ≤ ux} and Y =
{
y ∈ IRt : ly ≤ y ≤ uy

}
. (1.1)

In the remainder, we assume that the bounds lx, ux, ly and uy are finite. We also note that
general nonlinear inequality constraints can be easily included in problem (P); see the end of
Section 2 for more details. However, we concentrate here on equality constraints because the OPF
problem contains only general nonlinear constraints of this form.

1.1 Solution Techniques for MINLP

Significant progress has been made in the solution of convex MINLPs in the past few decades with
the emergence of methods such as outer approximations proposed by Duran and Grossmann (1986)
(see also Fletcher and Leyffer (1994)), generalized Benders decomposition (Geoffrion, 1972), and
LP/NLP-based branch-and-bound (Quesada and Grossmann, 1992) (see also Leyffer (1993)). Effi-
cient solvers implementing these methods, like Bonmin (Bonami et al., 2005) or FilMINT (Abhishek
et al., 2006) are now available. However, the treatment of nonconvex MINLPs still lags behind the
progress in convex MINLPs. The combination of nonconvex and discrete variables increases the
complexity of these problems. Convergence to a global optimum (or even to a feasible point, if
such a point exists) cannot be guaranteed with local optimization methods. To ensure the conver-
gence to a global optimum (or to prove that the problem is infeasible) requires global optimization
methods.

There exist two general-purpose solvers for nonconvex MINLPs: BARON, developed by Tawar-
malani and Sahinidis (2002), and αBB, developed by Adjiman et al. (1998). Both solvers replace
the equality constraints by two inequalities and then construct outer approximations1 of the in-
equality constraints. One drawback of using BARON is the fact that the trigonometric functions in
our target application have only trivial outer approximations. In fact, BARON cannot be directly
applied to problems with trigonometric functions. Bussieck (2004) reports numerical experience
with GAMS/BARON on an OPF problem. The trigonometric functions are approximated by poly-
nomials of degree 7 to “fool” BARON into accepting problems with trigonometric expressions.
However, BARON is unable to solve this problem in a reasonable amount of time.

In this paper, we develop a new global optimization method that relaxes each function by a linear
envelope. Our method can be seen as an extension of the special ordered sets (SOS) approximation
method introduced by Beale and Tomlin (1970) and recently employed by Martin et al. (2006) to
solve a nonconvex mixed integer problem arising in the management of gas networks. Our method
is motivated by a nonconvex MINLP problem, but it can also be applied to continuous nonlinear
and nonconvex problems.

The remainder of this paper is organized as follows. We first briefly review the SOS approxima-
tion method and discuss its disadvantages in the rest of this section. These pitfalls motivate two
new techniques. In Section 2, we show that by developing SOS approximations on the computa-

1In the present context, the notion of “outer approximation” does not refer to the classical outer approximation

methods mentioned above. But it means that the approximation is a valid relaxation for the approached function.
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tional graph of the problem functions, we can avoid the exponential complexity of SOS variables.
We illustrate how bounds can be propagated and how we exploit common subexpressions to ob-
tain tighter approximations. In Section 3, we develop a new piecewise polyhedral approximation
based on SOS approximation that allows us to give a global convergence result. We compare our
new approximation to standard outer approximations, and we compute tight errors for a range of
functions relevant to OPF problems. In Section 4, we present our branch-and-refine algorithm and
establish the global convergence result.

1.2 SOS Approximation of Nonlinear Functions

In the 1970s, when methods for solving linear programs were much more advanced than methods
for nonlinear programs, Beale and Tomlin (1970) developed special ordered set approximations
to replace nonlinear functions by piecewise linear approximations. Recently, Martin et al. (2006)
implemented a similar approach and investigated properties of the resulting polyhedra. Here, we
briefly review SOS approximations and motivate the need for our new approach.

An SOS approximation of a function h(z), z = (x, y), defined on an n-dimensional space can be
built as follows (see (Tomlin, 1981) and (Martin et al., 2006)): we choose pq breakpoints in each
component zq, 1 ≤ q ≤ n, and create a grid. The total number IM of breakpoints in this grid is
thus equal to

IM =
n∏
q=1

pq. (1.2)

Let M be the set of breakpoints, referred to as zk, k ∈ IM , and let hk = h(zk).
The domain ⊗nq=1[lzq , uzq ] on which h(z) is approximated can be partitioned into S simplices,

each of which is defined by at most n+1 breakpoints belonging to M . With the previous notations,
the SOS approximation of h(z) is given by

h̃(z) =
∑
k∈IM

λkzk, (1.3)

where the SOS variables λk associated with the breakpoints zk satisfy∑
k∈IM

λkzk = z, (1.4a)

∑
k∈IM

λk = 1, 0 ≤ λk, k ∈ IM , (1.4b)

at most n+ 1 λk are nonzero and they correspond to an n-dimensional simplex. (1.4c)

Figure 1 illustrates an SOS approximation based on five breakpoints in each dimension for
the bilinear product xy on [−2, 2] × [−2, 2]. The decomposition of the domain into simplices is
given on the left of the figure, while the associated SOS approximation is represented on the right.
Actually, the SOS approximation is linear on each simplex and is given by the plane joining the
three breakpoints defining the triangle.

By replacing all nonconvex expressions in (P) by an SOS approximation, we obtain an approxi-
mation to (P) in the form of a mixed integer linear program (MILP). The resulting MILP problem
can be solved by using special branching tactics adapted to SOS variables.
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Figure 1: SOS approximation of xy (right) on the partitioned domain (left).

However, the SOS approximation method is not always efficient, and it did not converge on
the OPF problem. In a preliminary implementation, the resulting MILP was wrongly declared
infeasible, even though the nonlinear problem was feasible. This pitfall illustrated in Example 1.1,
motivates the derivation of outer approximations.

Example 1.1 Consider the following two equality constraints:

c1(x) ≡ sin(x) = 0 (1.5)

c2(x) ≡ −0.35 (x− π)2 − 0.3 = 0. (1.6)

There are two solutions to c1(x) = c2(x) in the domain [0, 2π], namely, x1 ' 3.492 and x2 ' 4.541.
Next, we construct an SOS approximation of c1 and c2 and observe that the feasible domain of this
MILP is empty. This situation is illustrated in Figure 2.

To avoid this adverse situation, we could add breakpoints to the SOS approximations or we
could refine the approximations during the branch-and-bound process by adding new breakpoints.
However, detecting the places where the approximation must be refined is not trivial. We present
an alternative based on piecewise polyhedral envelopes in the next section.

A second disadvantage of the SOS approximation suggested in (Martin et al., 2006; Möller, 2004)
is the large number of additional variables λk introduced. To approximate a general function h(z)
that depends on n variables, we introduce a mesh of size pn, where p is the number of breakpoints,
assumed to be identical in all dimensions. Thus, we need an exponential number, pn, of new
variables. In addition, structural information such as partial separability is not usually exploited
by SOS approximations.

In the next two sections we show how these two difficulties can be overcome.

2 Decomposition of Nonlinear Functions

In this section we show how the exponential complexity of SOS approximations can be avoided.
It is well known that most functions can be decomposed into unary and binary (one- and two-
dimensional) functions. This decomposition is not unique and can be expressed in a computational
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Figure 2: Example illustrating potentially empty feasible region for SOS approximation.

graph. We show how to propagate bounds through the computational graph and how common
subexpressions in the graph can be exploited.

Consider a general nonlinear function h(x, y). We introduce intermediate variables wi as follows:

wj = xj j = 1, . . . , s,
ws+j = yj j = 1, . . . , t,
ws+t+j = hj(wj1{, wj2}) j1, j2 < s+ t+ j, j = 1, . . . ,K,
h(x, y) = ws+t+K ,

(2.1)

where the first s + t assignments of problem to intermediate variables is done solely to simplify
the notation. The functions hj are unary (e.g., sin(w), in which case the second argument, wj2 , is
omitted) or binary functions (e.g., addition, multiplication).

Example 2.1 Consider the nonlinear function

h(x1, x2, x3) = ax2
1 + bx1x2 cos(x3), (2.2)

where xj, 1 ≤ j ≤ 3, are variables and a and b are parameters. A possible decomposition of h(x)
into unary and binary functions is

wj = xj , j = 1, . . . , 3, (2.3a)

w4 = w2
1, (2.3b)

w5 = w1w2, (2.3c)

w6 = cos(w3), (2.3d)

w7 = w5w6, (2.3e)

w8 = aw4 + bw7 = h. (2.3f)
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Figure 3 represents the computational graph of the nonlinear function (2.2). In this figure, the
bottom nodes correspond to the original variables xj, while the top node represents the function
after decomposition. The other nodes are associated to new variables wj, allowing us to decompose
the function. Each directed edge means that the source node is directly involved in the function
represented at the target node. We note that this decomposition is not unique. For example, we
could have chosen to use w6 = cos(w3), w7 = w1w6 and w8 = w2w7 instead.

Figure 3: Decomposition of the nonlinear function (2.2).

Each nonlinear constraint (2.3) could now be approximated by using SOS approximations of
dimension 1 or 2. By exploiting a decomposition into unary and binary functions, we can create
approximations that avoid the exponential growth in the number of variables of standard SOS ap-
proximations. For example, a general nonlinear function h(x) that depends on n variables x1, . . . , xn
introduces pn SOS variables. However, by exploiting the decomposition into unary and binary func-
tions, we can approximate the same function with only k1p+ k2p

2 additional SOS variables, where
k1 is the number of unary and k2 is the number of binary functions, respectively. This approach is
similar in spirit to automatic differentiation (Griewank, 2000).

Unfortunately, the reduction in the number of SOS variables also reduces the accuracy of the
approximation. To see this effect, consider the trilinear function h(x) = x1x2x3 defined on [0, 4]3,
and assume that we use three breakpoints in each dimension. The SOS-4 approximation of h(x)
at x = (2, 2, 1) is exact. However, using the decomposition w1 = x1x2 and h = w1x3, we can show
that the value of the corresponding SO approximation is 0, rather than 4.

We can now reformulate the original nonconvex MINLP, (P), using SOS approximations of the
nonlinear components that arise in the decomposition of the problem functions. We associate the
intermediate variables with the problem function they represent through subscripts; that is, wij is
the jth variable of the decomposition of gi(x, y). We denote the unary and binary components of
each function gi(x, y) by gij(wi,j1{, wi,j2}), where the second argument is absent if gij is a unary
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function. This gives rise to the equivalent MINLP problem:

minimize
x,y,w

w0,s+t+K0

subject to wij = xj i = 0, . . . ,m, j = 1, . . . , s
wi,s+j = yj i = 0, . . . ,m, j = 1, . . . , t
wi,s+t+j = gij(wi,j1{, wi,j2}) i = 0, . . . ,m, j = 1, . . . ,Ki, j1, j2 < s+ t+ j

x ∈ X, y ∈ Y ∩ ZZ t, (x, y) ∈ P,w ∈W,
(D)

where W represents the bounds on the intermediate variables wij that are readily derived for a
range of nonlinear functions.

Proposition 2.2 Consider the functions x2, sin(x), cos(x), and xy arising in the OPF problem on
the range [lx, ux]× [ly, uy]. It follows that the following bounds can be derived on the range of these
functions:

x2

lx2 =

{
min(l2x, u

2
x) if 0 6∈ [lx, ux],

0 if 0 ∈ [lx, ux],
ux2 = max(l2x, u

2
x),

xy
lxy = min(lxly, lxuy, uxly, uxuy),
uxy = max(lxly, lxuy, uxly, uxuy),

sin(x)

lsin(x) =

{
−1 if lx ≤ 3π

2 ≤ ux,
min(sin(lx), sin(ux)) otherwise,

usin(x) =

{
1 if lx ≤ π

2 ≤ ux,
max(sin(lx), sin(ux)) otherwise,

cos(x)

lcos(x) =

{
−1 if lx ≤ π ≤ ux,
min(cos(lx), cos(ux)) otherwise,

ucos(x) = max(cos(lx), cos(ux)),

where we have assumed without loss of generality that the domain of trigonometric functions lies
in [0, 2π] (otherwise, we can simply exploit the periodicity of these functions).

The proof of this proposition can be found in Wanufelle (2007, Section 3.2.2). We can now
obtain an SOS approximation problem for (D) by replacing each nonlinear term,

wi,s+t+j = gij(wi,j1{, wi,j2}), (2.4)
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by its piecewise-linear SOS approximation,

wi,s+t+j =
∑
k∈Iij

λkijgij(w
k
i,j1{, w

k
i,j2}),

1 =
∑
k∈Iij

λkij , λkij ≥ 0 ∀k ∈ Iij

wi,j1 =
∑
k∈Iij

λkijw
k
i,j1 , { and wi,j2 =

∑
k∈Iij

λkijw
k
i,j2},

(2.5)

where wkij are the breakpoints, Iij is the set of indices that describe the SOS, and λkij are the addi-
tional SOS variables. However, the SOS approximation still suffers from the potential infeasibility
described in Example 1.1. The next section shows how we can avoid this pitfall by replacing the
piecewise linear approximation by a piecewise polyhedral outer approximation.

We finish this section by observing that an additional advantage of the decomposition (D)
is the fact that we can exploit common subexpressions. In our implementation, every common
subexpression will be present only once in the SOS approximation. In addition, we can exploit the
fact that some variables occur in both unary and binary functions to further reduce the number
of SOS variables that are required. These simplifications are important because they keep the
problem size small and manageable.

3 Outer Approximation with Special Ordered Sets

In this section we show how to avoid the pitfalls of Example 1.1, where an SOS approximation
created an infeasible approximation. The basic idea is illustrated in Figure 4. Instead of replacing
a function by its SOS approximation, we compute a tight polyhedral envelope on each subinterval.
This gives rise to a piecewise polyhedral envelope. We start by building the envelopes, which need
the computation of the maximum errors produced by the SOS approximations, and then show how
these errors can be determined for the problem functions that appear in the OPF model.

3.1 Piecewise Polyhedral Envelopes

In our method, each nonlinear function appearing in the problem is replaced by a piecewise polyhe-
dral envelope based on SOS. We refer to the resulting problem as the envelope problem. Figure 4
shows the piecewise linear domain based on an SOS approximation of sin(x) on [0, 2π], which is
represented by the area inside the continuous lines.

The piecewise envelope is readily derived. For example, consider the unary function wh =
h(w), and let εLk and εUk be the maximum overestimation and underestimation error of the SOS
approximation on the interval [wk, wk+1],

εLk = max
w∈[wk,wk+1],λk+λk+1=1

(
0, λkh(wk) + λk+1h(wk+1)− h(w)

)
,

and

εUk = max
w∈[wk,wk+1],λk+λk+1=1

(
0, h(w)− λkh(wk)− λk+1h(wk+1)

)
,

for λk, λk+1 ≥ 0. Then we can write the piecewise envelope as( p∑
k=1

λk
(
h(wk)−max(εLk−1

, εLk)
))
≤ wh ≤

( p∑
k=1

λk
(
h(wk) + max(εUk−1

, εUk)
))

, (3.1)



Branch-and-Refine for Mixed-Integer Nonconvex Global Optimization 9

Figure 4: Piecewise polyhedral envelope for sin(x) on [0, 2π] satisfying the SOS condition (left),
and convex hull of SOS envelope (right).

where εL0 , εLp , εU0 , and εUp are set to zero. This expression can be tightened if we use the lambda
method (e.g., (Williams, 2005)), which would require introducing additional binary variables. How-
ever, we prefer to avoid the introduction of additional binary variables.

3.2 Computation of the SOS Approximation Errors

In this section, we determine analytical forms for the approximation errors in (3.1). These errors
depend on the functions that are approximated, and we compute them here for the functions that
occur in the OPF problem, namely, x2, sin(x), cos(x), and the bilinear product xy. Generalizations
to other nonconvex functions are straightforward.

Proposition 3.1 Let [xk, xk+1] be a piece of the domain [lx, ux] where the function x2 is replaced by
its SOS approximation. The maximum overestimation and underestimation approximation errors,
εx2,Lk and εx2,Uk respectively, generated on this piece are

εx2,Lk =
(xk+1 − xk)2

4
and εx2,Uk = 0. (3.2)

The proof of this proposition can be found in (Wanufelle, 2007, Theorem 3.1).
We can further simplify the lower bound used in (3.1), by observing that for a uniform approx-

imation with a fixed number p of equally spaced breakpoints, we obtain

p∑
k=1

λk max(εx2,Lk−1
, εx2,Lk) =

(ux − lx)2

4(p− 1)2
· (3.3)

Indeed, in this case, the overestimation error εx2,Lk is identical for each piece and corresponds to
the right side of (3.3). This can be easily checked by using (1.4b).

While the approximation errors for the square functions depend on the size of the pieces rather
than on the domain, the approximation errors for trigonometric functions have a different analyt-
ical expression that strongly depends on the domain over which the approximation is done. The
following two propositions summarize these results; see (Wanufelle, 2007, Theorems 3.5 and 3.6)
for a proof. We assume without loss of generality that the domain belongs to [0, 2π].
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Proposition 3.2 Let [xk, xk+1] ⊆ [0, 2π] be a piece of the domain where the function sin(x) is
replaced by its SOS approximation defined by f̃(x) = akx+ bk, where

ak =
sinxk+1 − sinxk

xk+1 − xk
and bk =

xk+1 sinxk − xk sinxk+1

xk+1 − xk
· (3.4)

Then, the maximum overestimation and underestimation approximation errors, εsin,Lk and εsin,Uk
respectively, generated on this piece are such that

εsin,Lk =


ak(2π − arccos(ak)) + bk if 2π − arccos(ak) ∈ [xk, xk+1],

+ sin(arccos(ak))
0 otherwise,

εsin,Uk =

{
−ak arccos(ak)− bk + sin(arccos(ak)) if arccos(ak) ∈ [xk, xk+1],
0 otherwise.

Proposition 3.3 Let [xk, xk+1] ⊂ [0, 2π] be a piece of the domain where the function cos(x) is
replaced by its SOS approximation defined by f̃(x) = ckx+ dk, where

ck =
cosxk+1 − cosxk

xk+1 − xk
and dk =

xk+1 cosxk − xk cosxk+1

xk+1 − xk
· (3.5)

Then, the maximum overestimation and underestimation approximation errors, εcos,Lk and εcos,Uk ,
respectively, generated on this piece are such that

εcos,Lk =


ck(π + arcsin(ck)) + dk if π + arcsin(ck) ∈ [xk, xk+1],

+ cos(arcsin(ck))
0 otherwise,

εcos,Uk =



ck(arcsin(ck))− dk if − arcsin(ck) ∈ [xk, xk+1],
+ cos(arcsin(ck))

−ck(2π − arcsin(ck))− dk if 2π − arcsin(ck) ∈ [xk, xk+1],
+ cos(arcsin(ck))

0 otherwise.

We now consider the bilinear product. This function has the advantage that the approxima-
tion given by constraints (1.3) to (1.4b) defines an envelope for xy as long as this function is
approximated on a rectangle, as stated by the following result.

Theorem 3.4 For every (x, y, xy) such that lx ≤ x ≤ ux (lx < ux) and ly ≤ y ≤ uy (ly < uy),
there exists a unique convex combination of the four points (lx, ly, lxly), (lx, uy, lxuy), (ux, ly, uxly)
and (ux, uy, uxuy); in other words, there exist λi ≥ 0, i = 1, . . . , 4, such that x

y

xy

 = λ1

 lx
ly
lxly

+ λ2

 lx
uy
lxuy

+ λ3

 ux
ly
uxly

+ λ4

 ux
uy
uxuy

 (3.6)

and
4∑
i=1

λi = 1 (3.7)

hold.
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Proof. Let (x, y, xy) be a point such that lx ≤ x ≤ ux (lx < ux) and ly ≤ y ≤ uy (ly < uy). As a
consequence, x can be expressed as a convex combination of the extreme points of [lx, ux]; that is,
there exists some µ belonging to [0, 1] such that

x = (1− µ) lx + µ ux. (3.8)

In the same way, there exists some ν belonging to [0, 1] such that

y = (1− ν) ly + ν uy. (3.9)

By using the expressions of x and y in function of µ and ν, the bilinear product xy can be trans-
formed into

xy = (1− µ)(1− ν) lxly + (1− µ)ν lxuy + µ(1− ν) uxly + µν uxuy. (3.10)

Therefore, the values
λ1 = (1− µ)(1− ν),
λ2 = (1− µ)ν,
λ3 = µ(1− ν),
λ4 = µν

satisfy the conditions (3.6) and (3.7) as well as the positivity condition. Substituting these values
in (3.6), we observe that the first three equations of (3.6) are equivalent to (3.8), (3.9), and (3.10),
respectively. Equation (3.7) follows by summing the λi’s and factorizing. The positivity constraint
on the λi also holds, because µ and ν belong to the interval [0, 1]. The convex combination is
unique because it can be shown that the matrix

lx lx ux ux
ly uy ly uy
lxly lxuy uxly uxuy
1 1 1 1

 (3.11)

is nonsingular. 2

We note that (x, y, xy) is required to be written as a convex combination of the extreme points,
which implies that four equations must be satisfied. Therefore, four points (and not three) are
necessary to generate any point (x, y, xy). Furthermore, this theorem is not trivial because a
positivity constraint is imposed on the coefficients of a convex combination.

As a direct consequence of this theorem, for each point (x, y), there exists a convex combination
of λij such that the bilinear product, h(x) = xy, equals its linear approximation given by (1.3)
to (1.4b). Consequently, we do not have to introduce approximation errors in inequalities (3.1)
to guarantee that the correct value of the bilinear product xy at a feasible point (x, y) can be
produced, and we can write (3.1) as

wxy =
px∑
i=1

py∑
j=1

λijxiyj . (3.12)

We note, however, that we can no longer enforce the standard SOS condition because it would
violate the result of Theorem 3.4. Below, we show how to branch efficiently on bilinear terms.
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3.3 Comparison with Standard Outer Approximations

We now compare the quality of our outer approximations with standard ones from the literature. We
start by considering the McCormick outer approximation wxy of bilinear terms xy; see (McCormick,
1976). For our comparison, we use the concept of the convex hull of a set of points, that is, the
smallest convex set containing this set of points. The following result can then be established; see
the Appendix for a proof.

Theorem 3.5 The set of values (x, y, wxy) such that (x, y) belongs to the rectangle [lx, ux]× [ly, uy]
and (x, y, wxy) satisfies conditions,

wxy =
px∑
i=1

py∑
j=1

λijxiyj , x =
px∑
i=1

py∑
j=1

λijxi, y =
px∑
i=1

py∑
j=1

λijyj , (3.13a)

px∑
i=1

py∑
j=1

λij = 1, λij ≥ 0 ∀i = 1, . . . , px, j = 1, . . . , py, (3.13b)

is equivalent to the set of points that satisfy the McCormick inequalities:

(McCormick)


wxy ≤ lxy + uyx− lxuy,
wxy ≤ uxy + lyx− uxly,
wxy ≥ lxy + lyx− lxly,
wxy ≥ uxy + uyx− uxuy.

(3.14)

Moreover, these two sets are equivalent to the convex hull of points (x, y, xy), with lx ≤ x ≤ ux and
ly ≤ y ≤ uy.

Despite the equivalence of our SOS-based outer approximation (3.13) and the McCormick one,
we note that in some cases, the SOS approximations can be made tighter, if at least one argument
of the bilinear product appears in another function of the problem. We illustrate this fact with the
following NLP: 

min y2 + xy + 5x+ z,

s.t. x2 − z ≤ 0,
−x− z ≤ −0.75,
−x+ y ≤ −2,
−1 ≤ x ≤ 2,
−3 ≤ y ≤ 0,
0.25 ≤ z ≤ 4.

The solution of this problem is (x∗, y∗, z∗) = (0.5, 1.5, 0.25). We construct an envelope problem
(E) with three equally spaced breakpoints in each dimension: {xi}3i=1 = {−1, 0.5, 2} for x and
{yj}3j=1 = {−3, −1.5, 0} for y, which gives nine variables λi,j . As explained in Section 2, the same
SOS set λ can be employed to underestimate the square and the bilinear functions. At the solution
of the resulting underestimation problem, the components x, y, and z are given by (x∗, y∗, z∗), and
the value of the approximation of xy given by w∗xy = −0.75 coincides with the exact value of x∗y∗.
At the solution of the problem with the McCormick underestimators, we obtain the same solution
(x∗, y∗, z∗). However, the underestimation of the bilinear product xy is not exact and is given by
wxy = −3.
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Let us now consider the trigonometric functions. Caratzoulas and Floudas (2004) study the
underestimators of such functions. They propose convex trigonometric underestimators. The un-
derestimators of sin(x) and cos(x) on [0, 2π] are respectively given by

Usin(x) = −15.72 sin
(

1
6

(x+ 2π)
)

+ 13.61 (3.15)

and

Ucos(x) = −16.99 sin
(

1
6

(x+ 2π)
)

+ 15.72. (3.16)

Figure 5 compares these underestimators with the SOS-based underestimators for five equally
spaced breakpoints. For the cosine function, the SOS-based underestimator dominates the under-

Figure 5: Comparison of SOS-based underestimator of sin(x) and cos(x) on [0, 2π] and Usin(x) and
Ucos(x).

estimator in (3.16). The same is not true for the sine function near 2π. However, we can show
that the area of underestimation is strictly smaller than for the underestimators in (Caratzoulas
and Floudas, 2004) (see the Appendix for the proof of the following proposition).

Proposition 3.6 Let Asin
SOS (respectively Acos

SOS) be the area between the sine (respectively the co-
sine) function defined on [0, 2π] and its SOS-based underestimator using five equally spaced break-
points. Let Asin

trig (respectively Acos
trig) be the area between the sine (respectively the cosine) function

defined on [0, 2π] and its convex trigonometric underestimator given by (3.15) (respectively (3.16)).
Then, it follows that

Asin
SOS = 0.451 Asin

trig and Acos
SOS = 0.313 Acos

trig.

Moreover, Caratzoulas and Floudas have shown that the maximum underestimation error grows
linearly with the size of the domain. This is not the case with the SOS-based underestimators
because the periodicity of trigonometric functions can be exploited with our method. Note that,
when the length of the approximation domain is smaller than π, the trigonometric function may
be convex on this domain. In this case, the convex trigonometric underestimator is better than
that based on SOS because it corresponds to the trigonometric function itself. Moreover, when
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the trigonometric function is defined on a domain where it is concave, the underestimator used by
Caratzoulas and Floudas is not a trigonometric function but the straight line joining the extreme
points of the interval, exactly like the underestimation based on SOS.

3.4 The Piecewise Linear Envelope Problem

We are now able to formulate the piecewise linear envelope problem corresponding to (D) that
forms the basis of our branch-and-refine method. We replace each component by its SOS-based
envelope given in (3.1):

minimize
x,y,w,λ

w0,s+t+K0

subject to wij = xj i = 0, . . . ,m, j = 1, . . . , s
wi,s+j = yj i = 0, . . . ,m, j = 1, . . . , t

wi,s+t+j ≥
∑
k∈Iij

λkij

(
gij(wki,j1{, w

k
i,j2})− L

k
ij

)
j1, j2 < s+ t+ j, j = 1, . . . ,Ki,

i = 0, . . . ,m

wi,s+t+j ≤
∑
k∈Iij

λkij

(
gij(wki,j1{, w

k
i,j2}) + Ukij

)
j1, j2 < s+ t+ j, j = 1, . . . ,Ki,

i = 0, . . . ,m
wi,s+t+Ki = 0 i = 1, . . . ,m
x ∈ X, y ∈ Y ∩ ZZ t, (x, y) ∈ P and w ∈W,

(E)
where we have defined

Lkij := max(εLi,j,k−1
, εLi,j,k)

and
Ukij := max(εUi,j,k−1

, εUi,j,k)

and εLi,j,k−1
, εLi,j,k , εUi,j,k−1

, and εUi,j,k are the approximation errors that are valid on each piece.
The constraint w ∈ W collects all valid bounds on the variables wij . Note that when gij is linear,
Lkij and Ukij are set to zero ∀k ∈ Iij , and (E) can be simplified since the two associated constraints
involving the SOS variables can be replaced by wi,s+t+j = gij(wi,j1{, wi,j2}). In the case of inequality
constraints, we can simplify the problem by removing one side of the corresponding inequalities.

4 A Branch-and-Refine Method

Another important difference from Martin et al. (2006) is that we do not branch to satisfy the SOS
condition. Instead, we employ a classical branch-and-bound approach and branch on the original
problem variables, refining the outer approximations. We believe that this branching choice is
superior to SOS branching for three reasons. First, Theorem 3.4 shows that enforcing the SOS
conditions invalidates the simple outer approximation property of the convex hull of the SOS set
for bilinear functions. Second, refining the outer approximations allows us to adaptively generate
tighter outer approximations as we dive down the tree. Third, in early experiments we have observed
that branching on the problem variables is more efficient than SOS branching. The results of a
careful numerical study are presented in a companion paper (Leyffer et al., 2008).
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In our implementation, we branch on the original variables only. Our experience shows that
branching on these variables improves the numerical efficiency than branching on the intermediate
variables wij . Moreover, choosing the branching variable has a cost (see (Leyffer et al., 2008)),
which is increasing with the number of possible candidates for branching. This branching method-
ology allows us to fix the number of SOS variables in our envelope problems, thereby simplifying
the Jacobian storage. As a consequence, we adaptively refine the envelopes in places where the
approximations are not adequate. We refer to our method as branch-and-refine. The key to its
convergence is the fact that the envelopes are refined as we move down the tree.

4.1 Branching, Subproblems, and Fathoming Rules

To describe our branch-and-refine method, we define the subproblems that are solved during the
treesearch. We start by solving the continuous linear programming (LP) relaxation of the envelope
problem (E). If this problem is infeasible, then we conclude that the original problem is infeasible.
Otherwise, we determine a branching variable and create two new problems that are placed on a
stack. The algorithm continues to remove and solve problems on the stack, adding new problems
by branching until the stack is empty.

In our method, we have the choice of branching on a continuous variable, xi; tightening the
piecewise envelope; or branching on a nonintegral integer variable, yi, to improve integrality. We
set X1 := X and Y1 := Y and branch on a nonintegral value y′i by defining new variables ranges (we
use the convention that left/down branches are indexed by even integers, and right/up branches
by odd integers):

Y2k = {y ∈ Yk : yi ≤ by′ic}, and X2k = Xk for the left branch,
Y2k+1 = {y ∈ Yk : yi ≥ by′i + 1c}, and X2k+1 = Xk for the right branch.

(4.1)

Similarly, we can branch on continuous variables xi at a value x′i:

X2k = {x ∈ Xk : xi ≤ x′i}, and Y2k = Yk for the left branch,
X2k+1 = {x ∈ Xk : xi ≥ x′i}, and Y2k+1 = Yk for the right branch.

(4.2)

Each time we branch, we also refine the envelopes. The constraint matrix is then updated. Thus,
in practice, more than one bound shifts, and we update the bounds in W . Branching on the
continuous variables rearranges the breakpoints, as indicated in Figure 6.

At every node of the branch-and-bound tree, we solve a continuous LP relaxation of the envelope
problem (E), that is, the problem obtained by dropping the integrality conditions. This relaxation
problem is denoted LP(Xk, Yk), where Xk and Yk are the current feasible subspaces. Its optimum
value is referred to as zLPk , while (x̄k, ȳk) denote its optimum solution.

We also define the NLP with fixed integer variables y = ȳk and range Xk, as
zNLPk := minimize

x
g0(x, ȳk)

subject to gi(x, ȳk) = 0, i = 1, . . . ,m
x ∈ Xk, (x, ȳk) ∈ P.

(NLP(ȳk, Xk))

After solving LP (Xk, Yk) we can fathom nodes in the branch-and-bound tree if one of the
following conditions holds.
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Figure 6: Update of breakpoints after branching on x at x3 (2 dimensions). The white dots represent
the discarded breakpoints.

F1 If the LP relaxation is infeasible, then we can conclude that there are no feasible points in
Xk × Yk, and we can fathom this node.

F2 If the LP relaxation produces an integral solution ȳk ∈ ZZt, and if the solution of (NLP(ȳk, Xk))
satisfies |zNLPk − zLPk | ≤ ε, then we can fathom this node. In this case, either we have a new
incumbent, or the node is dominated by a better solution.

F3 If the optimum value of the LP relaxation satisfies |U −zLPk | ≤ ε, where U is the optimal value
of the incumbent, then no better solution can be found in Xk × Yk, and we can fathom this
node.

We note that integrality of the integer variables alone is not sufficient to fathom a node: We also
have to ensure that the envelope of the nonlinear functions is sufficiently close to the nonlinear
functions before fathoming this node.

4.2 Branch-and-Refine Algorithm

We are now in a position to formally state in Algorithm 7 our branch-and-refine method. There
are many details that we do not specify, such as the branching and node selection rules. See our
companion paper (Leyffer et al., 2008) for details.

The algorithm differs in one important aspect from the usual MINLP branch-and-bound ap-
proach: Even if all integer variables are integral, we may need to branch in order to ensure that
the envelopes are sufficiently close to the nonlinear expressions. There are different ways in which
we can determine a branching variable after solving the LP relaxation (LP(Xk, Yk)). We can solve
the NLP relaxation of (P) for the subtree corresponding to Xk × Yk. This NLP solution provides
an upper bound for the subtree, and we can find a nonlinear expression on which to branch by
comparing the solutions of the NLP relaxation and (LP(Xk, Yk)). A cheaper alternative is to simply
evaluate the nonlinear expressions at the LP solution (x̄k, ȳk) and to pick a nonlinear expression to
branch on.
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Initialize the upper bound to U =∞, and choose a tolerance ε > 0.
Set k = 1 and place the LP relaxation (LP(Xk, Yk)) on the stack.

while stack is not empty do
Remove an LP relaxation, (LP(Xk, Yk)), from the stack and solve it.
Let the solution be (x̄k, ȳk).
if (LP(Xk, Yk)) infeasible or zLPk ≥ U − ε then

Fathom this node.

else
Set branch = true.
if ȳk integer feasible then

Solve NLP (NLP(ȳk, Xk)) and let the solution be (x̂k, ȳk).
if zNLPk < U − ε then

Update the upper bound U := zNLPk .
New incumbent: (x∗, y∗) := (x̂k, ȳk).
if |zNLPk − zLPk | ≤ ε then

Fathom this node and every node i of the stack for which zLPi ≥ U − ε,
set branch = false.

if branch == true then
Find a branching variable, and add two new LP relaxations to the stack:

1. Use (4.1) to branch on a non-integral integer, yi.

2. Use (4.2) to branch on a continuous variable, xi, which intervenes in

an envelope not sufficiently tight.

Refine the problems by adding new breakpoints.
Propagate the bounds through the expression tree to tighten bounds on all
variables for both new problems.

Set k:=k+1

Figure 7: Algorithm: branch-and-refine method
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4.3 Convergence Proof

Theorem 4.1 If the discrete variables and those appearing nonlinearly in the nonlinear problem
(P) are bounded, Algorithm 7 converges to a global optimum of problem (P ), within the accuracy
ε, in a finite number of iterations.

Proof. This theorem is shown in two steps. We start by proving that we cannot fathom the
optimal solution without saving it, and then we show that the algorithm is finite.

Every relaxation (LP(Xk, Yk)) of the envelope problem is an LP, and hence its solution is a
global solution and provides a lower bound on the nonlinear problem (P) on Xk × Yk. Moreover,
the optimum of (NLP(ȳk, Xk)) provides an upper bound on the solution of (P). Thus it follows
that the three fathoming rules F1, F2, and F3 in Algorithm 7 are valid.

Consequently, a node is fathomed only when the associated domain is guaranteed not to contain
a better optimum than the incumbent. It thus remains to prove that we cannot branch infinitely
often. We observe that Y is bounded, which implies that the integer branches are finite. By branch-
ing on the continuous variables, we refine the envelope on that branch, because each LP retains
the same number of SOS breakpoints. The differentiability of gi implies that the approximation
error of the envelope problem must become less than ε as we continue to branch. At this point,
the envelope problems will be sufficiently close to the nonlinear problem such that one of the three
conditions F1, F2, or F3 is satisfied.
2

4.4 Comparison with the Classical SOS-Branching

Figure 8 illustrates the advantages of refining the approximation compared to branching on the
SOS condition. We consider the function x2 on the interval [−2, 2]. The center plot shows the
envelope before branching for three equally spaced breakpoints. We branch on x = 0 and obtain
two symmetric problems. The left plot shows the refined problem on [0, 2] after branching, and
the right plot shows the convex hull of the SOS problem on the same domain after branching. We
observe that refinement produces a tighter envelope.

The result of Figure 8 can be made more precise by comparing SOS branching and refinement
about the same point. SOS branching on λj creates two problems, with

j∑
i=1

λi = 1 and
p∑
i=j

λi = 1

for the left and right child node, respectively. The corresponding branching bounds for the variable
x are given by

x ≤ xj and x ≥ xj .

The next proposition, whose proof is given in the Appendix, shows that refinement always creates
a tighter outer approximation than does SOS branching.

Proposition 4.2 Let ∆x be the range of the variable x before branching and p be the number of
equally spaced breakpoints. Then, the sum of the area of the envelopes for x2 for the left and right
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Figure 8: Refinement of the domain of the possible values (x,wx2) for the approximation of x2

when x ∈ [2, 2]. Center: before any branching; left: after branching on x; right: after branching on
λ.

subproblems obtained by branching on the variable λj without updating the breakpoints is given by

Aλ =
∆3
x

12
1

(p− 1)2

(
1 + 2

(
(p− 1)2 − 3(p− j)(j − 1)

))
,

while that obtained by branching on the variable x at the jth breakpoint and by keeping a constant
number of equally spaced breakpoints is given by

Ax =
∆3
x

12
2p2 − 4p+ 3

(p− 1)4

(
(p− 1)2 − 3(p− j)(j − 1)

)
.

The area associated to the branching on the variable λj is always larger, and the ratio between
the two area is given by

Aλ
Ax

=
(p− 1)2

(
1 + 2

(
(p− 1)2 − 3(p− j)(j − 1)

))
(2p2 − 4p+ 3) ((p− 1)2 − 3(p− j)(j − 1))

> 1·

Moreover, the best choice to minimize the sum of the areas of the envelopes for the left and right
subproblems consists in branching at the midpoint of the range of the variable x.

To see this proposition, assume that we use five equally spaced breakpoints and that we branch
at the third one. Then it follows that

Aλ =
3
64
, Ax =

11
256

and
Aλ
Ax

=
12
11
·

Next, we consider the bilinear function. There exist several ways to branch on the variables λij :
vertically, horizontally, or diagonally. Therefore, comparisons, which will be based on the volume
of the envelopes, must be performed for these three branching techniques. Branching vertically
and horizontally amounts to reduce the ranges of x and y respectively. However, the best results
one can expect with such branching techniques is to isolate a rectangle of the grid instead of a
triangle. In order to satisfy the SOS condition, a diagonal branching is used. When vertical or
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horizontal branching is performed by branching and refining, or by branching on the SOS variables
without modifying the breakpoints, we obtain exactly the same four extreme breakpoints and thus,
by Theorem 3.4, the same envelopes; for more details on the proof, see (Wanufelle, 2007, Theorem
4.10).

Assume now that after having branched several times, it is no longer possible to branch vertically
or horizontally on the SOS variables λij and that the SOS condition is not fulfilled. A diagonal
branching thus must be performed. Branching in this way amounts to approach the bilinear product
by a plane, its SOS approximation, which violates the property of outer approximation (3.12).
Practically, the errors in (3.1) become nonzero. To avoid this situation, when we branch on the
original variables, we continue to branch vertically or horizontally.

Because branching on the variables λij or on the original variables does not divide the approx-
imation domain in the same way (see Figure 9), the resulting envelopes are different. It has been

Figure 9: Breakpoints for a diagonal branching phase if we branch on λij and for a vertical branching
phase if we branch on x (three breakpoints used in each dimension for the first envelope problem).

shown in (Wanufelle, 2007, Section 4.2.2) that the volume of the envelope obtained by branching
on λij to satisfy the SOS condition is identical for the two subproblems and is three times larger
than the one obtained by branching vertically or horizontally at the midpoint of the range of x
or y. Branching on the original variables by updating breakpoints can thus lead to much tighter
envelopes.

5 Conclusion

In this paper, we have presented a new global optimization method to solve a class of mixed-
integer nonlinear and nonconvex problems arising in the management of electrical networks. The
proposed method can be seen as an extension of the classical SOS approximation method. In
contrast to the latter, our method builds a linear envelope problem and is able to refine it as much
as necessary, which is the key for the convergence to a global optimum. In this context, branching
is no longer performed on the SOS variables but on the original variables. Moreover, our method
starts by decomposing each nonlinear function of the problem into unary and bilinear functions.
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This process allows us to reduce the size of the problem and to develop a general framework that
can be used to solve a larger class of problems. We have shown that our approach creates tighter
relaxations than do standard underestimators.

Several open questions remain. On concerns the positioning of the breakpoints or the position
of the branch in the range of the continuous variables. Adding cuts to the method is a way
to possibly increase its speed of convergence. Moreover, other classes of envelopes such as the
McCormick inequalities can be readily included in our framework.

A Proofs of Comparison to Other Envelopes

Proof of Theorem 3.5 To demonstrate this theorem, we show that both sets (x, y, wxy) are
equivalent to the convex hull of points (x, y, xy), with (x, y) ∈ [lx, ux]× [ly, uy]. We first recall that
the convex hull of a set of points corresponds to the set of convex combinations of these points;
see (Hiriart-Urruty and Lemaréchal, 2001) for instance. We define Cenv to be the set of points
(x, y, wxy) such that (x, y) belongs to [lx, ux]× [ly, uy] and (x, y, wxy) satisfies conditions (3.13), and
we prove that Cenv is the set of convex combinations of points (x, y, xy), which we denote Chull.
Cenv ⊆ Chull, is easily checked. Indeed, by definition, each point of Cenv is a convex combination
of points (xi, yj , xiyj) where (xi, yj) belongs to [lx, ux]× [ly, uy]. Next, we prove that Chull ⊆ Cenv.
By Theorem 3.4, any point (x, y, xy) such that lx ≤ x ≤ ux and ly ≤ y ≤ uy can be written
as a convex combination of the four extreme points (lx, ly, lxly), (lx, uy, lxuy), (ux, ly, uxly), and
(ux, uy, uxuy), where (lx, ly), (lx, uy), (ux, ly), and (ux, uy) are breakpoints. Accordingly, any point
of Chull, a convex combination of points (x, y, xy), can be expressed as a convex combination of the
four extreme points given above and thus belongs to Cenv.

Having shown that the points satisfying conditions (3.13) define the convex hull of points
(x, y, xy), let us now consider the envelope generated by the McCormick inequalities (3.14). Al-
Khayyal and Falk (1983) show that the convex and concave envelopes of xy defined on a rectangle
[lx, ux]× [ly, uy] given by McCormick inequalities,

Cvex(x, y) = max{lxy + lyx− lxly, uxy + uyx− uxuy}, (A.1)

Ccave(x, y) = min{lxy + uyx− lxuy, uxy + lyx− uxly}. (A.2)

Using this result, one can show that the set of points (x, y, wxy) satisfying McCormick inequalities
corresponds to the convex hull of points (x, y, xy) and, as a consequence, to the set Cenv. 2

Proof of Proposition 3.6 We first consider the underestimators of sin(x). On [0, 2π], the area
Asin
trig between the sine function and its convex trigonometric underestimator defined in (3.15) can

be computed as follows:

Asin
trig =

∫ 2π

0

(
sin(x) + 15.72 sin

(
1
6

(x+ 2π)
)
− 13.61

)
dx

= 6 . 15.72
[
− cos

(
1
6

(x+ 2π)
)]2π

0

− 13.61 . 2π

= 94.32
(
− cos(2π

3 ) + cos(π3 )
)
− 27.22π

' 8.806.

(A.3)
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We now determine the area Asin
SOS between the sine function and its SOS-based underestimator

using five equally spaced breakpoints, which is represented on the right part of Figure 10. To build
this underestimator, we start from the SOS approximation of sin(x). As shown on the left part
of Figure 10, this approximation produces overestimation errors for the third and fourth pieces,
that is, on [π, 3π

2 ] and [3π
2 , 2π]. Applying Proposition 3.2 to these two pieces, we find that the

overestimation errors are identical on both pieces and are equal to 0.210. To obtain an outer
approximation, we remove this error from the SOS approximation as required by definition (3.1)
and obtain the underestimator referred to as SOS underestimator on Figure 10. However, this
representation implies that the SOS condition is satisfied, which is not necessarily true. As a
consequence, this underestimator must be relaxed to allow any convex combination between points
belonging to the SOS underestimator. We finally obtain the SOS-based underestimator shown on
the right of Figure 10. This underestimator is thus defined on [0, 3π

2 ] by the straight line joining
(0, 0) to (3π

2 ,−1.210), that is,
u(x) = −0.257x, (A.4)

and on [3π
2 , 2π] by the straight line joining (3π

2 ,−1.210) to (2π,−0.210), that is,

u(x) =
2
π
x− 4.210. (A.5)

Figure 10: Construction of the SOS-based underestimator for sin(x) on [0, 2π] using five equally
spaced breakpoints.

The area Asin
SOS is thus equal to

Asin
SOS =

∫ 2π

0
sin(x) dx−

∫ 3π
2

0
−0.257x dx−

∫ 2π

3π
2

2
π

(x− 4.210) dx

= 0.257
[
x2

2

] 3π
2

0

−
[

2
π

x2

2
− 4.210x

]2π

3π
2

= 0.257
9π2

8
− 4π + 2.105π +

9π
4

' 3.969.

(A.6)
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The ratio between Asin
SOS and Asin

trig is thus given by

Asin
SOS

Asin
trig

= 0.451.

Let us next consider the cosine function. On [0, 2π], the area Acos
trig between this function and

its convex trigonometric underestimator defined in (3.16) is such that:

Acos
trig =

∫ 2π

0

(
cos(x) + 16.99 sin

(
1
6

(x+ 2π)
)
− 15.72

)
dx

= 6 . 16.99
[
− cos

(
1
6

(x+ 2π)
)]2π

0

− 15.72 . 2π

= 101.94
(
− cos(2π

3 ) + cos(π3 )
)
− 31.44π

' 3.168.

(A.7)

To establish the expression of the SOS-based underestimator of cos(x) on [0, 2π], we use the same
scheme as for sin(x). We build its SOS approximation based on five equally breakpoints and then
determine the pieces where an overestimation error arises, which are the second and third pieces;
see the left of Figure 11. The overestimation errors on these pieces are again identical and equal
to 0.210, by Proposition 3.3. Removing these errors from the SOS approximation, we obtain the
SOS underestimator represented in Figure 11. Since this underestimator is convex, it corresponds
to our SOS-based underestimator u(x). It is thus defined by a different expression on each piece,
that is,

u(x) =


the straight line joining (0, 1) to (π2 ,−0.210) on [0, π2 ],
the straight line joining (π2 ,−0.210) to (π,−1.210) on [π2 , π],
the straight line joining (π,−1.210) to (3π

2 ,−0.210) on [π, 3π
2 ],

the straight line joining (3π
2 ,−0.210) to (2π, 1) on [3π

2 , 2π].

More precisely, we have

u(x) =


−2.421

π x+ 1 on [0, π2 ],
− 2
πx+ 0.789 on [π2 , π],

2
πx− 3.210 on [π, 3π

2 ],
2.421
π x− 3.842 on [3π

2 , 2π].

(A.8)

Using (A.8), we compute the area Acos
SOS as

Acos
SOS =

∫ 2π

0
cos(x) dx−

∫ π
2

0

(
−2.421

π
x+ 1

)
dx−

∫ π

π
2

(
− 2
π
x+ 0.789

)
dx

−
∫ 3π

2

π

(
2
π
x− 3.210

)
dx−

∫ 2π

3π
2

(
2.421
π

x− 3.842
)
dx

=
2.421
π

[
x2

2

]π
2

0

+
[
x2

π

]π
π
2

+
[
−x2

π

] 3π
2

π

+
2.421
π

[
−x2

2

]2π

3π
2

+
π

2
(−1− 0.789 + 3.210 + 3.842)

= −1.205
4

6π
4

+ 2π − 10π
4

+
π

2
5.263

' 0.992.

(A.9)
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Figure 11: Construction of the SOS-based underestimator for cos(x) on [0, 2π] using five equally
spaced breakpoints.

We conclude this proof by computing the ratio between Acos
SOS and Acos

trig, which is equal to

Acos
SOS

Acos
trig

' 0.313.

2

Proof of Proposition 4.2 We begin by computing the area Ax associated to the branching on
the variable x at xj . Figure 12 represents this kind of branching: on the left the envelope before
branching and on the right after branching. On the right plot, the vertical line shows the branching
place. The envelope on the left of this line thus corresponds to the left subproblem, while the one
on the right is associated to the right subproblem.

Figure 12: Left: envelope before branching; right: decomposition into 2 trapeziums of each envelope
generated by branching on x3 and refining (5 breakpoints used).

As represented in Figure 12, the feasible area for each subproblem generated by branching can
be decomposed into p− 1 trapeziums, where the number of trapeziums corresponds to the number
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of pieces. The “height,” H, of a trapezium is equal to the length of a piece, namely, ∆x′
p−1 , where

∆x′ denotes the length of the approximation domain after branching. The length of the bases, the
parallel sides defined in x = xi, 1 ≤ i ≤ p, and denoted Bi, is equal to the sum of the errors εx2,L

removed in (3.1) and εx2,O(xi), the maximum overestimation approximation error produced at xi.
For the sake of simplicity, we use another notation for εx2,L, namely, εx2,∆x

to highlight the length
of the domain on which the square function is approximated. By using (3.3), it can be shown that
the errors εx2,∆x

satisfy

εx2,∆x′
=

∆2
x′

4(p− 1)2
· (A.10)

The maximum overestimation approximation error that can be produced at xi, εx2,O(xi), is
equal to the difference at point xi between the straight line joining (x1, (x1)2) to (xp, (xp)2) and
the square function, that is,

εx2,O(xi) = (x1 + xp)xi − x1xp − (xi)2,

= (xp − xi)(xi − x1).

By using the fact that the breakpoints are equally spaced, we write (xp − xi) and (xi − x1) as
functions of ∆x′ . Then εx2,O(xi) becomes

εx2,O(xi) =
∆2
x′

(p− 1)2
(p− i)(i− 1)· (A.11)

Because the area of an envelope obtained by branching on x, denoted Asub, is equal to the sum of
the areas of p− 1 trapeziums, we have

Asub =
p−1∑
i=1

1
2
H(Bi +Bi+1) =

p−1∑
i=1

1
2

∆x′

p− 1
(2εx2,∆x′

+ εx2,O(xi) + εx2,O(xi+1)).

which simplifies to

Asub =
1
2

∆x′

p− 1

(
2
p−1∑
i=1

εx2,∆x′
+ 2

p−1∑
i=2

εx2,O(xi)

)
,

becauseεx2,O(xi) is equal to zero at points x1 and xp. Replacing εx2,∆x′
and εx2,O(xi) by their values

given in (A.10) and (A.11), respectively, we have

Asub =
∆x′

p− 1

(
(p− 1)

∆2
x′

4(p− 1)2
+

∆2
x′

(p− 1)2

p−1∑
i=2

(p− i)(i− 1)

)
·

Next, we apply the following properties,

n∑
i=1

i =
n(n+ 1)

2
and

n∑
i=1

i2 =
1
6
n (n+ 1)(2n+ 1), (A.12)
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and obtain the desired result:

Asub =
∆3
x′

(p− 1)3

(
1
4

(p− 1) +
p−1∑
i=2

(
− p+ (p+ 1)i− i2

))
=

∆3
x′

(p− 1)3

(
1
4

(p− 1) + (p− 2)(−p) + (p+ 1)
(

(p− 1)p
2

− 1
)

−1
6

(p− 1) p (2(p− 1) + 1) + 1
)

=
∆3
x′

(p− 1)3

(
−4p2 + 9p− 1

4
+
p3 + 3p2 − 10p

6

)
=

∆3
x′

(p− 1)3

2p3 − 6p2 + 7p− 3
12

=
∆3
x′

12
2p3 − 2p2 − 4p2 + 4p+ 3p− 3

(p− 1)3

=
∆3
x′

12
(p− 1)(2p2 − 4p+ 3)

(p− 1)3

=
∆3
x′

12
2p2 − 4p+ 3

(p− 1)2
·

Replacing ∆x′ by its value for the left and right subproblems, that is,

∆xL = ∆x
j − 1
p− 1

and ∆xR = ∆x
p− j
p− 1

,

we obtain the area of the envelopes for the left and right subproblems as

AxL =
∆3
x

12
2p2 − 4p+ 3

(p− 1)5
(j − 1)3 and AxR =

∆3
x

12
2p2 − 4p+ 3

(p− 1)5
(p− j)3.

Summing these two quantities, we obtain the area of the envelopes for both subproblems generated
by branching at xj :

Ax =
∆3
x

12
2p2 − 4p+ 3

(p− 1)5
[(j − 1)3 + (p− j)3]

=
∆3
x

12
2p2 − 4p+ 3

(p− 1)5
[(j − 1 + p− j)

(
(j − 1)2 + (p− j)2 − (p− j)(j − 1)

)
]

=
∆3
x

12
2p2 − 4p+ 3

(p− 1)4

(
(j − 1)2 + (p− j)2 − (p− j)(j − 1)

)
=

∆3
x

12
2p2 − 4p+ 3

(p− 1)4

(
((j − 1) + (p− j))2 − 3(p− j)(j − 1)

)
=

∆3
x

12
2p2 − 4p+ 3

(p− 1)4

(
(p− 1)2 − 3(p− j)(j − 1)

)
,

which is the desired result.
Let us now consider the area Aλ obtained after branching at λj , as shown in Figure 13. This

area can be seen as the sum of the areas of p− 1 trapeziums. The “height,” H, of a trapezium is
equal to the length of a piece, namely, ∆x

p−1 . The length of the bases, the parallel sides at x = xi,
1 ≤ i ≤ p, and denoted Bi, is equal to the sum of εx2,∆x

defined in (A.10) and εx2,O(xi), the
maximum overestimation approximation error that can be produced at xi for the subproblems
obtained after branching on λj . For the indices i ≤ j, the error εx2,O(xi) is equal to the difference
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Figure 13: Left: envelope before branching; right: decomposition into 2 trapeziums of the envelopes
for x2 obtained by branching on λ3 (5 breakpoints used).

at point xi between the square function and the straight line joining (x1, (x1)2) to (xj , (xj)2), while,
for the indices i > j, it corresponds to the difference with the straight line joining (xj , (xj)2) to
(xp, (xp)2). Thus, by a similar argument to the one used prove (A.11), we obtain

εx2,O(xi) =

{
∆2
x

(p−1)2
(j − i)(i− 1) if i ≤ j,

∆2
x

(p−1)2
(p− i)(i− j) if i > j.

(A.13)

Therefore, the area associated to the branching on λj can be computed as

Aλ =
p−1∑
i=1

1
2
H(Bi +Bi+1) =

p−1∑
i=1

1
2

∆x

p− 1
(2εx2,∆x

+ εx2,O(xi) + εx2,O(xi+1)).

Because the overestimation error εx2,O(xi) is equal to zero at x1 and xp, Aλ becomes

Aλ =
1
2

∆x

p− 1

(
2
p−1∑
i=1

εx2,∆x
+ 2

p−1∑
i=2

εx2,O(xi)

)
.

Since the expression of εx2,O(xi) depends on the value of i with regard to j, we obtain

Aλ =
∆x

p− 1

p−1∑
i=1

εx2,∆x
+

j∑
i=2

εx2,O(xi) +
p−1∑
i=j+1

εx2,O(xi)

 .
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Using (A.10), (A.13) and properties (A.12), we obtain

Aλ =
∆x

p− 1

p−1∑
i=1

∆2
x

4(p− 1)2
+

∆2
x

(p− 1)2

j∑
i=2

(j − i)(i− 1) +
∆2
x

(p− 1)2

p−1∑
i=j+1

(p− i)(i− j)


=

∆3
x

(p− 1)3

p− 1
4

+
j∑
i=2

(−i2 + (j + 1)i− j) +
p−1∑
i=j+1

(−i2 + (p+ j)i− pj)


=

∆3
x

(p− 1)3

p− 1
4
−

p−1∑
i=2

i2 + (j + 1)
j∑
i=2

i− j(j − 1) + (p+ j)
p−1∑
i=j+1

i− pj(p− 1− j)


=

∆3
x

(p− 1)3

(
p− 1

4
− 1

6
(p− 1)p(2p− 1) + 1 +

j(j + 1)
2

(j + 1− p− j)− j − 1 + j

+(p− 1)j2 +
p(p+ j)(p− 1)

2
− pj(p− 1)

)
=

∆3
x

(p− 1)2

(
1
4
− 1

6
(2p2 − p)− (j2 + j)

2
+ j2 +

(p2 + pj)
2

− pj
)

=
∆3
x

12(p− 1)2

(
3 + 2p2 + 6j2 − 6j − 6pj + 2p

)
=

∆3
x

12(p− 1)2

(
1 + 2(1 + p2 + p+ 3j2 − 3j − 3pj)

)
=

∆3
x

12(p− 1)2

(
1 + 2((p− 1)2 + 3p+ 3j2 − 3j − 3pj)

)
=

∆3
x

12(p− 1)2

(
1 + 2((p− 1)2 − 3(p− j)(j − 1))

)
.

Therefore, the ratio
Aλ
Ax

can be derived as

Aλ
Ax

=
(p− 1)2

(
1 + 2

(
(p− 1)2 − 3(p− j)(j − 1)

))
(2p2 − 4p+ 3) ((p− 1)2 − 3(p− j)(j − 1))

·

To show that Aλ is always larger than Ax, it suffices to prove that the ratio Aλ
Ax

is larger than 1,
which is equivalent to

(p− 1)2(1 + 2α) > (2p2 − 4p+ 3)α, (A.14)

where we define α as
α = (p− 1)2 − 3(p− j)(j − 1).

In order to show (A.14), we compute

(p− 1)2(1 + 2α)− (2p2 − 4p+ 3)α = (p− 1)2(1 + 2α)− 2(p− 1)2α− α,
= (p− 1)2 − α,
= (p− 1)2 − (p− 1)2 + 3(p− j)(j − 1),
= 3(p− j)(j − 1).

Equation (A.14) follows from the fact that 3(p− j)(j − 1) is always positive, because 1 < j < p.
It remains to show that the best choice to minimize the sum of the areas of the envelopes for

the left and right subproblems is to branch at the midpoint of the range of the variable x. Actually,
we look for the point xj that minimizes the quantity Ax, which can be seen as a function of j. At
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this point, the derivative of Ax(j) must be equal to zero. Therefore, we want to determine j∗ for
which

A′(j) =
∆3
x

12
2p2 − 4p+ 3

(p− 1)4

(
− 3(−(j − 1) + (p− j))

)
= 0,

that is
j∗ =

p+ 1
2
·

Since it can be easily shown that the second derivative of Ax(j) is positive, j∗ minimizes Ax(j).
Because the breakpoints are equally spaced between x1 and xp, xj

∗
corresponds to the point at the

half of the range of the variable x, (which is not necessarily a breakpoint since j is not an integer
if p is even). 2
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Martin, A., Möller, M., and Moritz, S. (2006). Mixed integer models for the stationary case of gas
network optimization. Mathematical Programming, 105:563–582.

McCormick, G. (1976). Computability of global solutions to factorable nonconvex programs: Part
I - convex underestimating problems. Mathematical Programming, 10:147–175.
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